Estimating Materials

Cottage Activity

Sill Plate

- A piece of dimensional lumber that is fastened to the top of a foundation wall.
- This plate is the nailing base for floor joists or studs.
- It bonds and anchors
 the wood frame to the foundation.

Estimating Sill Plate

- Usually made of 2" x 6" or 2" \times 8" Treated Lumber
- Formula
- Total linear feet of foundation wall broken down into 8 ' to 16 ' lengths.

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \\ \hline \end{gathered}$
	2 X 4 X Precuts		
	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \times 8 \times 16$ Treated		
	2 X 12 X 8		
	$2 \times 12 \times 12$		
	2 X 12 X 16		
	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Main Beam or Girder

- Center support for the floor joists
- 2" $\times 12^{\prime \prime} \times 16^{\prime}$
- 4 - nailed together

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \\ \hline \end{gathered}$
	2 X 4 X Precuts		
	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \mathrm{x} 8 \times 16$ Treated		
	2 X 12 X 8		
	$2 \times 12 \times 12$		
4	$2 \times 12 \times 16$		
	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Rim J oist

- Another name is joist header - runs parallel to the main beam. All floor joists are nailed to it on 16" centers.
- 2 - 2" $\times 12^{\prime \prime} \times 16^{\prime}$
(one at each end of cottage)

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
	2 X 4 X Precuts		
	2×4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \times 8 \times 16$ Treated		
	2 X 12 X 8		
	$2 \times 12 \times 12$		
4+2	$2 \times 12 \times 16$		
	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Floor J oists

- Made of 2" thick lumber of varying widths and lengths depending on the span required
- Web Trusses or Floor Trusses are manufactured alternates to dimensional lumber
- The length of the joist is determined by the span
- The model cottage will use 2 " $\times 12$ " $\times 12$ ' ioists

Floor J oists

- Number of FLOOR J OISTS = Length of run of main beam times 3/4 (.75) plus 1 (starting joist) times 2 (second side)
- Add two per opening in floor
- Add two for each internal wall running parallel to joists
- 2’x12" Lumber for cottage/exam purposes

Floor J oists continued

. $16 \times .75+1 \times 2$

- 12 + 1×2 = 26
- Add two joists for stair opening - 26 + 2 = 28
- Floor joists must also be doubled when an internal wall above is running parallel to the joists below
- $\mathbf{2 8}+\mathbf{2}=\mathbf{3 0}$

Bridging for Floor J oists

- Bridging is used to stiffen the floor systems and keep the joists from warping and twisting.
- The two types of wooden bridging are
- Staggered solid block bridging
- Herringbone cross bridging

- Metal bridging is also available.

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
	2 X 4 X Precuts		
	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \times 8 \times 16$ Treated		
	2 X 12 X 8		
30	$2 \times 12 \times 12$		
6	2 X 12 X 16		
	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Sub-floor Materials

- $3 / 4^{\prime \prime} \times 4^{\prime} \times 8^{\prime}$ Tongue and groove plywood or OSB

Estimating Sub-floor

- Formula for figuring how many sheets of sub-floor are required
- Square foot of entire floor divided by 32
- 4' $\times 8$ ' sheet $=32$ sq. ft.
- Cottage: $16 \times 24 \div 32=12$

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
	2 X 4 X Precuts		
	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \times 8 \times 16$ Treated		
	2 X 12 X 8		
30	$2 \times 12 \times 12$		
6	$2 \times 12 \times 16$		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Precuts

Total Height of Wall $971 / 8^{\prime \prime}$

Total Height of Wall 97 1/8"

Precuts

- PRECUTS =
- Linear feet of all walls times 3/4 (.75) plus
2 for each wall penetration (door, window, outside corner, inside corner,
 partition intersection)

Precuts

- $24+24+16+16+16+10+3+4=113$
- $113 \times .75=84.75$ (round up to 85)
- 22 Wall Penetrations
- $22 \times 2=44$
- 129 total precuts needed
- $85+44=129$

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \times 8 \times 16$ Treated		
	2 X 12 X 8		
30	$2 \times 12 \times 12$		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Top \& Bottom Plates

- Take the total linear feet of all walls and dívide by 16 (longest standard size framing lumber) and multiply by 3 (A bottom sole plate and two top plates are required for
 each wall section.)
- 113 / $16 \times 3+10 \%$
$=24$ (round up)

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \mathrm{x} 8 \times 16$ Treated		
	2 X 12 X 8		
30	$2 \times 12 \times 12$		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Headers

- Headers carry the weight of the building across door and window openings.

Headers

- In a 2" x 4" wall a $1 / 2$ " piece of plywood or OSB is placed between the 2" x 12" header material to make the header width $31 / 2$ " which is the width of a 2 " x 4" stud.

Door Headers

- Door header length
- Width of door + 5"
- Ex. 36" door + 1 1/2" jamb + 1/2"
level/plumb +3 " for headers

Door A Header

- Door A - 36"
- Door header length
- 36 " +5 " $=41$ "
- 41" < 4^{\prime}
- $2 \times 4^{\prime}=8^{\prime}$
- One 2 " $\times 12$ " $\times 8$ ' piece of lumber is needed to build the header for a 36 " door.

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \mathrm{x} 8 \times 16$ Treated		
1	2 X 12 X 8		
30	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Door B Header

- Door B - 32"
- Door header length
- 32" + 5" = 37"
- 37" < 4'
- $2 \times 4^{\prime}=8^{\prime}$
- One 2 " $\times 12$ " $\times 8$ ' piece of lumber is needed to build the header for a 32" door.
- Two door B's will require two 2 "x12"x8' pieces of lumber

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	$2 \times 4 \times 16$		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \mathrm{x} 8 \times 16$ Treated		
1+2	2 X 12 X 8		
30	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Door C Header

- Door C-24"
- Door header length
- $24 "$ + 5" = 29"
- 29" < 3'
- $2 \times 3^{\prime}=6^{\prime}$
- One 2 " $\times 12$ " $\times 8$ ' piece of lumber is needed to build the header for a 32 " door.
- Cannot buy 2"x12"x6' lengths - must move up to 8' length

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	$2 \times 4 \times 16$		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \mathrm{x} 8 \times 16$ Treated		
3+1	2 X 12 X 8		
30	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Window Headers

- Window header length
- Rough Opening Width + 3"

Window A Header

- Window A Rough Opening - 2'-6" wide
- Header length
- $30^{\prime \prime}+3 \prime$ " $=33^{\prime \prime}$
- 33 " < 3^{\prime}
- $2 \times 3^{\prime}=6^{\prime}$
- Two 2 " $\times 12^{\prime \prime} \times 12^{\prime}$ piece of lumber are needed to build the header for four Window A's.
- One 2"x12"x8' piece of lumber is needed for the fifth Window A.

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	2 X 4 X 16		
4	$2 \times 8 \times 12$ Treated		
2	$2 \times 8 \times 16$ Treated		
4+1	2 X 12 X 8		
$30+2$	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Window B Header

- Window B Rough Opening - 5'-0" wide
- Header length
- $60^{\prime \prime}+3^{\prime \prime}=63^{\prime \prime}$
- 63" < 6'
- $2 \times 6^{\prime}=12^{\prime}$
- Two 2"x12"x12' piece of lumber are needed to build the header for two Window B's.

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	$2 \times 4 \times 16$		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \mathrm{x} 8 \times 16$ Treated		
5	2 X 12 X 8		
$32+2$	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Outside Wall Sheating

- 1/2"x4'x8' Plywood or OSB

Estimating Outside Wall Sheating Part 1

- Linear feet of perimeter walls divided by 4
- Covers stud walls
- $16+16+24+24 \div 4$
$-80 \div 4=20$

Estimating Outside Wall Sheating Part 2

- Height of truss times (1/2 of the length of span of truss) times 2 divided by 32
- Covers gable ends of truss
- $4 \times 8 \times 2 \div 32=2$

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \mathrm{x} 8 \times 16$ Treated		
5	2 X 12 X 8		
34	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
22	1/2" x 4' x 8' CDX Plywood or OSB		
	16' Trusses		
		TOTAL LUMBER COST	\$

Estimating Roof Trusses

- Gable Roof
- Length of house divided by 2 (24" O.C.) plus 1 (starting truss)
- $24 \div 2+1=13$

- 2 gable end trusses
- 11 web trusses

Types of Trusses

Gable End Truss

W or Common Truss

Scissor Truss

Location of Truss Types

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \times 8 \times 16$ Treated		
5	2 X 12 X 8		
34	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
22	1/2" x 4' x 8' CDX Plywood or OSB		
13	16' Trusses		
		TOTAL LUMBER COST	\$

Estimating Roof Sheating

- $1 / 2^{\prime \prime}$ or $5 / 8^{\prime \prime} \times 4$ 4 $\times 8$ ' Plywood or OSB
- Square feet of entire roof divided by 32
- $10 \times 26 \times 2=520 \div 32=16.25$
- Round up to 17

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	$2 \times 4 \times 16$		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \mathrm{x} 8 \times 16$ Treated		
5	2 X 12 X 8		
34	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
22+17	1/2" x 4' x 8' CDX Plywood or OSB		
13	16' Trusses		
		TOTAL LUMBER COST	\$

NUMBER REQUIRED	ITEM	COST EACH	$\begin{gathered} \text { TOTAL } \\ \text { COST } \end{gathered}$
129	2 X 4 X Precuts		
24	2 X 4 X 16		
4	$2 \mathrm{x} 8 \times 12$ Treated		
2	$2 \times 8 \times 16$ Treated		
5	2 X 12 X 8		
34	2 X 12 X 12		
6	2 X 12 X 16		
12	3/4" x 4' x 8' T \& G Plywood or OSB		
39	1/2" x 4' x 8' CDX Plywood or OSB		
13	16' Trusses		
		TOTAL LUMBER COST	\$

